-x^2-22+5x=-9x^2-2+5x

Simple and best practice solution for -x^2-22+5x=-9x^2-2+5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -x^2-22+5x=-9x^2-2+5x equation:



-x^2-22+5x=-9x^2-2+5x
We move all terms to the left:
-x^2-22+5x-(-9x^2-2+5x)=0
We add all the numbers together, and all the variables
-1x^2-(-9x^2-2+5x)+5x-22=0
We get rid of parentheses
-1x^2+9x^2-5x+5x+2-22=0
We add all the numbers together, and all the variables
8x^2-20=0
a = 8; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·8·(-20)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*8}=\frac{0-8\sqrt{10}}{16} =-\frac{8\sqrt{10}}{16} =-\frac{\sqrt{10}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*8}=\frac{0+8\sqrt{10}}{16} =\frac{8\sqrt{10}}{16} =\frac{\sqrt{10}}{2} $

See similar equations:

| 8t+7t=47+2-19 | | 9(n-96)=27 | | 7(s+1)=-3=7s | | .35x+12=20.05 | | 6w+3-5w=2-1 | | 3.25=0.5+w | | 7(m+6)=91 | | 2(3+x=18 | | 6w+3-5=2-1 | | -21x+15x=3(-9-3x) | | 5(f+9)=55 | | -8+3x^2=0 | | 12(2x+9)=6(2x+28) | | 2r-1=-3+3r | | -8-3x^2=0 | | 22-2u=6 | | 3-2b=8-3b | | y−–321=741 | | 5.7(x-3.3)=7.98 | | -3+p=5-7p | | y−–321=741. | | 6x-4=-4x16 | | 2(9-5x)=-72 | | 17=w/7 | | 4-12x^2-4x=0 | | 1/4(n+2)=-21/2 | | 8=w7−9 | | x=8+2.31/3.3 | | 3.3(x-2.5)=20.46 | | 3+2x=5x+17 | | 8.88=4.44(x﹣7) | | f+125/25=10 |

Equations solver categories